您选择的条件: Shaohua Gao
  • Review on Panoramic Imaging and Its Applications in Scene Understanding

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: With the rapid development of high-speed communication and artificial intelligence technologies, human perception of real-world scenes is no longer limited to the use of small Field of View (FoV) and low-dimensional scene detection devices. Panoramic imaging emerges as the next generation of innovative intelligent instruments for environmental perception and measurement. However, while satisfying the need for large-FoV photographic imaging, panoramic imaging instruments are expected to have high resolution, no blind area, miniaturization, and multidimensional intelligent perception, and can be combined with artificial intelligence methods towards the next generation of intelligent instruments, enabling deeper understanding and more holistic perception of 360-degree real-world surrounding environments. Fortunately, recent advances in freeform surfaces, thin-plate optics, and metasurfaces provide innovative approaches to address human perception of the environment, offering promising ideas beyond conventional optical imaging. In this review, we begin with introducing the basic principles of panoramic imaging systems, and then describe the architectures, features, and functions of various panoramic imaging systems. Afterwards, we discuss in detail the broad application prospects and great design potential of freeform surfaces, thin-plate optics, and metasurfaces in panoramic imaging. We then provide a detailed analysis on how these techniques can help enhance the performance of panoramic imaging systems. We further offer a detailed analysis of applications of panoramic imaging in scene understanding for autonomous driving and robotics, spanning panoramic semantic image segmentation, panoramic depth estimation, panoramic visual localization, and so on. Finally, we cast a perspective on future potential and research directions for panoramic imaging instruments.

  • Topological Interface-State Lasing in a Polymer-Cholesteric Liquid Crystal Superlattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The advance of topological photonics has heralded a revolution for manipulating light as well as for the development of novel photonic devices such as topological insulator lasers. Here, we demonstrate topological lasing of circular polarization in a polymer-cholesteric liquid crystal (P-CLC) superlattice, tunable in the visible wavelength regime. By use of the femtosecond-laser direct-writing and self-assembling techniques, we establish the P-CLC superlattice with a controlled mini-band structure and a topological interface defect, thereby achieving a low threshold for robust topological lasing at about 0.4 uJ. Thanks to the chiral liquid crystal, not only the emission wavelength is thermally tuned, but the circularly polarized lasing is readily achieved. Our results bring about the possibility to realize compact and integrated topological photonic devices at low cost, as well as to engineer an ideal platform for exploring topological physics that involves light-matter interaction in soft-matter environments.

  • Computational Optics Meet Domain Adaptation: Transferring Semantic Segmentation Beyond Aberrations

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Semantic scene understanding with Minimalist Optical Systems (MOS) in mobile and wearable applications remains a challenge due to the corrupted imaging quality induced by optical aberrations. However, previous works only focus on improving the subjective imaging quality through computational optics, i.e. Computational Imaging (CI) technique, ignoring the feasibility in semantic segmentation. In this paper, we pioneer to investigate Semantic Segmentation under Optical Aberrations (SSOA) of MOS. To benchmark SSOA, we construct Virtual Prototype Lens (VPL) groups through optical simulation, generating Cityscapes-ab and KITTI-360-ab datasets under different behaviors and levels of aberrations. We look into SSOA via an unsupervised domain adaptation perspective to address the scarcity of labeled aberration data in real-world scenarios. Further, we propose Computational Imaging Assisted Domain Adaptation (CIADA) to leverage prior knowledge of CI for robust performance in SSOA. Based on our benchmark, we conduct experiments on the robustness of state-of-the-art segmenters against aberrations. In addition, extensive evaluations of possible solutions to SSOA reveal that CIADA achieves superior performance under all aberration distributions, paving the way for the applications of MOS in semantic scene understanding. Code and dataset will be made publicly available at https://github.com/zju-jiangqi/CIADA.

  • Annular Computational Imaging: Capture Clear Panoramic Images through Simple Lens

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Panoramic Annular Lens (PAL) composed of few lenses has great potential in panoramic surrounding sensing tasks for mobile and wearable devices because of its tiny size and large Field of View (FoV). However, the image quality of tiny-volume PAL confines to optical limit due to the lack of lenses for aberration correction. In this paper, we propose an Annular Computational Imaging (ACI) framework to break the optical limit of light-weight PAL design. To facilitate learning-based image restoration, we introduce a wave-based simulation pipeline for panoramic imaging and tackle the synthetic-to-real gap through multiple data distributions. The proposed pipeline can be easily adapted to any PAL with design parameters and is suitable for loose-tolerance designs. Furthermore, we design the Physics Informed Image Restoration Network (PI2RNet) considering the physical priors of panoramic imaging and single-pass physics-informed engine. At the dataset level, we create the DIVPano dataset and the extensive experiments on it illustrate that our proposed network sets the new state of the art in the panoramic image restoration under spatially-variant degradation. In addition, the evaluation of the proposed ACI on a simple PAL with only 3 spherical lenses reveals the delicate balance between high-quality panoramic imaging and compact design. To the best of our knowledge, we are the first to explore Computational Imaging (CI) in PAL. Code and datasets are publicly available at https://github.com/zju-jiangqi/ACI-PI2RNet.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心